Dynamic RACH Partition for Massive Access of Differentiated M2M Services

نویسندگان

  • Qinghe Du
  • Wanyu Li
  • Lingjia Liu
  • Pinyi Ren
  • Yichen Wang
  • Li Sun
چکیده

In machine-to-machine (M2M) networks, a key challenge is to overcome the overload problem caused by random access requests from massive machine-type communication (MTC) devices. When differentiated services coexist, such as delay-sensitive and delay-tolerant services, the problem becomes more complicated and challenging. This is because delay-sensitive services often use more aggressive policies, and thus, delay-tolerant services get much fewer chances to access the network. To conquer the problem, we propose an efficient mechanism for massive access control over differentiated M2M services, including delay-sensitive and delay-tolerant services. Specifically, based on the traffic loads of the two types of services, the proposed scheme dynamically partitions and allocates the random access channel (RACH) resource to each type of services. The RACH partition strategy is thoroughly optimized to increase the access performances of M2M networks. Analyses and simulation demonstrate the effectiveness of our design. The proposed scheme can outperform the baseline access class barring (ACB) scheme, which ignores service types in access control, in terms of access success probability and the average access delay.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications

Cellular-based machine-to-machine (M2M) communication is expected to facilitate services for the Internet of Things (IoT). However, because cellular networks are designed for human users, they have some limitations. Random access channel (RACH) congestion caused by massive access from M2M devices is one of the biggest factors hindering cellular-based M2M services because the RACH congestion cau...

متن کامل

On the Reliability of LTE Random Access: Performance Bounds for Machine-to-Machine Burst Resolution Time

Random Access Channel (RACH) has been identified as one of the major bottlenecks for accommodating massive number of machine-to-machine (M2M) users in LTE networks, especially for the case of burst arrival of connection requests. As a consequence, the burst resolution problem has sparked a large number of works in the area, analyzing and optimizing the average performance of RACH. However, the ...

متن کامل

Dynamic Resource Allocation and Access Class Barring Scheme for Delay-Sensitive Devices in Machine to Machin (M2M) Communnications

Supporting simultaneous access of machine-type devices is a critical challenge in machine-to-machine (M2M) communications. In this paper, we propose an optimal scheme to dynamically adjust the Access Class Barring (ACB) factor and the number of random access channel (RACH) resources for clustered machine-to-machine (M2M) communications, in which Delay-Sensitive (DS) devices coexist with Delay-T...

متن کامل

The challenges of M2M massive access in wireless cellular networks

The next generation of communication systems, which is commonly referred to as 5G, is expected to support, besides the traditional voice and data services, new communication paradigms, such as Internet of Things (IoT) and Machine-to-Machine (M2M) services, which involve communication between Machine-Type Devices (MTDs) in a fully automated fashion, thus, without or with minimal human interventi...

متن کامل

Dynamic Access Class barring and Relay Assisted Radio Resource Allocation

Dynamic Access Class Barring and Relay Assisted Radio Resource Allocation Methods for Cellular M2M Networks c © Lilatul Ferdouse, 2015 Master of Applied Science Electrical and Computer Engineering Ryerson University Cellular based M2M systems generate massive number of access requests which create congestion in the cellular network. The contention-based random access procedures are designed for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016